当前位置:首页 > 教学资料 > 说课稿

《基本不等式》说课稿

时间:2025-02-23 07:13:25
《基本不等式》说课稿

《基本不等式》说课稿

作为一名辛苦耕耘的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以让教学工作更科学化。那么大家知道正规的说课稿是怎么写的吗?以下是小编精心整理的《基本不等式》说课稿,希望对大家有所帮助。

《基本不等式》说课稿1

一、说教材

1、地位和作用

本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。

2、教学目标

知识与技能目标:

(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

(2)感知不等式、函数、方程的不同作用与内在联系。

过程与方法目标:

让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来,通过自主交流合作解决问题,充分发挥学生的主体作用。

情感与态度目标:让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

3、教学重点、难点

教学重点:理解一次函数与一元一次不等式的关系;

教学难点:利用函数图象确定一元一次不等式的解集。

二、说教法

1、学情分析

我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

2、教学方法

鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

三、说学法

1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

2.学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能。

四、说教学程序

(一)创设问题情境,探究新知

兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。

游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。

教师提问:

你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?

在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?

设计游戏的目的有以下几点:

(1)游戏的内容便于学生列出函数关系式y=2x-4;

(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。

(二)探讨归纳,讲解新知

(1)解不等式2x-4>0

(2)观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?

这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。

所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。

通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。

最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。

(1)把一元一次不等式转化为ax+b>0或ax+b

(2)画出一次函数图象;

(3)一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。

(三)应用新知

例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的.方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。

例2:用画函数图像的方法解不等式5x+4

方法1:原不等式化为3x-6﹤0,画出直线y=3x-6。可以看出,当x

方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x

总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。

从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系,直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。

(四)随堂练习

1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?

(1)y=0;(2)y=-7;

(3)y>0;(4)y

设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。

2利用函数图象解出x:

(1)6x-4=3x-2;(2)6x-4

设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。

(五)小结与作业

1.归纳反思

2.利用一次函数图像求一元一次不等式解集的步骤

作业布置

必做题:习题14.3第3、4题

选做题:已知y1=-x+3,y2=3x-4,求x取得何值时y1>y2?

自我反思

应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。

《基本不等式》说课稿2

一、教材分析

1、教材所 ……此处隐藏4071个字……同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程

我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

(一)创设情境,激发兴趣:

师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

学习目标:

1、 理解不等式的基本性质1。

2、 会解简单的不等式。

此时我出示本节课的学习目标和归纳出不等式的概念:

归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

(二)探究新知、总结规律

在这个环节,我主要设计了以下二个活动来完成教学任务:

活动1:1、你能用“﹤”或“﹥”填空吗?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

(2)小组合作讨论交流,大胆说出自己的“发现”。

本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

活动2:你能用自己的语言概括不等式的性质吗?

本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

性质中的“不等号方向不变”的含义是什么?

使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

(三)针对练习、学习例题

1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

如果x-5>4,那么两边都 ,可得到x>9

2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。

例1、用“>”或“

(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

解:

【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。

例2、把下列不等式化为x>a或x

(1)x+6>5 (2)3x>2x+2

解:

【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。

(四)巩固提高、拓展延伸

在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。

1、课本P133练习第1、2题;

2、判断是非:

①若a>b,则a-3>b-3 ( )

②若m

③若a-8

④若x>7,则x-4

(五)畅谈收获、分层作业

回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。

1、不等式的概念和基本性质1.

2、简单不等式的变形.

通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。

最后是作业设计:

1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);

2、习题5.1A组第1题(1)(2),第3题(1)(2);

3、选作:习题5.1B组第1题。

五、教学评价

本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

六、教学反思

1、本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.

2、本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。

谢谢大家!

《《基本不等式》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式